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Abstract

Manycore architectures –hundreds to thousands of cores per processor – are seen by many
as a natural evolution of multicore processors. To take advantage of this massive parallelism
in reality requires a productive programming interface for parallel programming, and an
efficient execution and thread coordination runtime. Dynamic task parallelism, introduced
recently in several programming languages, promises to be an effective approach to parallel
programming. Unlike data parallel and SPMD programming models, concurrent tasks can
be dynamically created and joined at any time along the execution. A critical prerequisite
for an efficient task parallel runtime is a scalable synchronization mechanism to support
task coordination in different level of granularity.

This paper presents a study of task parallel runtime and synchronization issues in many-
core architectures, and provides alternative approaches to low-level hardware synchroniza-
tion primitives. To address these issues, we have implemented a high-level synchroniza-
tion construct called phasers on a Cyclops64 manycore processor. Phasers support both
localized and group synchronization of tasks by allowing threads to register and dereg-
ister from groups of synchronizing tasks. Phaser interfaces are much more flexible than
the architecture-specific hardware primitives available on manycore processors. We have
experimented with several implementations of phasers using software support, hardware
support or both to explore their portability, usability and performance. Our results show
that phasers provide comparable performance to hardware synchronization primitives, and
much better performance than other traditional constructs such as OpenMP barrier for a
set of commonly used benchmark applications.

1 Introduction

Manycore architectures – hundreds to thousands of cores per processor – is seen by many as
a natural evolution of multicore processors. Manycore system workloads could include appli-
cations that are massively parallel, require system partitioning, or have dynamically changing
parallelism. In reality, without comprehensive enabling software, it is very hard to achieve
maximum computation throughput on such systems. Programming models using dynamic task
parallelism, such as the ones introduced in the programming languages of the DARPA HPCS
program (X10 [1] and Chapel [2]), present a promising approach to productive parallel program-
ming on the prevalent multicore systems. Unlike the data parallel and the SPMD programming
models that normally assume a fixed number of concurrent threads during program execution,
in dynamic task parallelism, concurrent tasks can be created and joined at any time during the
execution.

The overhead of communication and synchronization between the concurrent tasks typically
presents one of the greatest obstacles to getting high performance and scalability on parallel
systems. In addition, the code that deals with thread communication and synchronization is
also a major source of complexity in parallel programming. To support the diverse workloads in
manycore architectures, synchronization mechanisms that provide high-level operations, such
as barrier, point-to-point signal/wait, and wavefront synchronization, with different granularity
levels, would be highly desirable.
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Phasers, first introduced in the Habanero-Java multicore programming system [3], are syn-
chronization constructs for task-parallel programs. Phasers unify barrier operation and point-
to-point synchronization in one interface, and feature deadlock-freedom and phase-ordering. In
this paper, we present our evaluation of phasers and a task parallelism runtime library on the
Cyclops64 manycore machine [4], a revolutionary architecture developed by IBM that targets
the petaflop supercomputing market. We implemented phasers using different combinations
of a portable busy-wait mechanism and the hardware synchronization primitives provided by
Cyclops64. The micro-benchmark experimental results show that all our phaser implementa-
tions outperforms OpenMP barriers by a large margin (up to two orders of magnitude). For
benchmark applications, our phaser implementations deliver performance that is comparable
to the hardware barriers provided by the Cyclops64 architecture, while providing a much more
flexible and higher-level synchronization mechanism than either OpenMP or Cyclops64 hard-
ware barriers. These experiments validate that phasers can be a highly efficient, flexible and
productive programming construct for synchronization on manycore processors.

The main contributions of this paper are:

• An analysis of synchronization issues in manycore architectures (using Cyclops64 pro-
cessor as an example) and how the phaser synchronization mechanism for task-parallel
programming model addresses these issues.

• A study and evaluation of busy-wait phaser implementation for the Cyclops64 manycore
architecture. Since the applications we have tested do not stress the (very high) memory
bandwidth of the Cyclops64 architecture, the busy-wait phaser implementation performs
on par with the variants using non-portable lower-level Cyclops64 hardware mechanisms.

• The evaluation of three other phaser implementations that leverage hardware and system
primitives (such as hardware barriers and suspend-awake) for both barrier and point-to-
point synchronization. We expect these variants to outperform the busy-wait implemen-
tation in bandwidth-intensive applications.

The rest of the paper is organized as follows: Section 2 introduces the Cyclops64 hardware
architecture and its threading and synchronization model. Section 3 presents the task paral-
lelism programming model, as well as the phaser construct and its features. We use an example
to demonstrate how to create task parallel programs using phasers. Section 4 describes our
implementations of phasers and the task parallelism runtime on Cyclops64. Section 5 presents
our experimental results. Finally, Section 6 discusses related work and Section 7 contains our
conclusions.

2 Cyclops64 Manycore Processors

Cyclops64 is a massively parallel architecture initially developed by IBM as part of the Blue
Gene effort. It targets the petaflop supercomputing market with a peak performance in excess of
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Figure 1: Cyclops64 Processor Architecture

1 PFLOPS. As shown in Figure 1, a Cyclops64 processor features 80 processing cores on a chip,
with two thread units per core that share one 64-bit floating point unit. Each core can issue 1
double precision floating point Multiply Add instruction per cycle, for a total performance of 80
GFLOPS per chip when running at 500MHz. Each thread unit has a user-manageable on-chip
memory of 32KB that can be used as cache. The processor chip includes a high-bandwidth
on-chip crossbar network with a total bandwidth of 384 GBytes/s, and four memory banks for
a total off chip memory bandwidth of 16GBytes/s.

Cyclops64 departs from conventional processor architecture in its thread model. Threads
in Cyclops64 run in a non-preemptive mode. The non preemptive thread model was designed
to provide several performance improvements, such as low thread management overhead, easier
and simpler synchronization, and easier access to the physical memory while greatly overcoming
the traditional limitations of the non preemptive systems. Creation and termination of threads
is simplified because all hardware resources are directly exposed to the application without the
virtualization complexity. The low complexity of the Cyclops64 threading architecture allows
thread creation and termination in only dozens of cycles.

Cyclops64 chips contain a special signal bus that allows threads to perform very efficient
synchronization without any memory bus interference. The signal bus connecting all threads
on a chip can be used to broadcast synchronization operations in less than 10 clock cycles,
enabling efficient barrier operations and mutual exclusion synchronization. Fast point-to-point
signal and wait operations are directly supported by hardware interrupts. For those operations,
synchronization between threads can be achieved in tens of cycles.

Cyclops64 toolchain includes a highly efficient threading library, named TNT (or TiNy-
Threads) [5], which uses the Cyclops64 hardware support to implement threading primitives.
The TNT thread interface is similar to the standard pthread API, simplifying porting of pthread-
based runtime systems and applications to Cyclops64. Additionally, TNT provides APIs that
can be used to access the hardware synchronization primitives, as shown in the Table 1.
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Name Description

tnt suspend() Suspends execution of the current thread indefinitely

tnt awake (const tnt desc t) Awakens a specified thread that was previously suspended

tnt barrier include (tnt barrier t
*)

Add the calling thread to the list of threads that wait on this
barrier

tnt barrier exclude (tnt barrier t
*)

Remove the calling thread from the list of threads that wait
on this barrier

tnt barrier wait (tnt barrier t *) Waits until all threads have reached the call to a specified
barrier function

Table 1: Some TNT APIs for synchronization on Cyclops64

3 Task Parallelism and Synchronization using Phasers

While the Cyclops64 instruction set architecture (ISA) primitives and toolchain interfaces de-
scribed in the previous section allow for very efficient low-level thread creation and synchroniza-
tion, actually writing parallel applications that correctly use such low-level primitives is a very
tedious and error-prone process. A higher-level programming model that would simplify task
creation and synchronization will greatly improve the programmability of manycore architec-
tures such as Cyclops64. In this paper, we propose the dynamic task parallel programming model
as a vehicle for exploiting parallelism and phasers as a mechanism for task synchronizations.

3.1 Dynamic task parallelism

Task parallelism, as compared to data parallelism, refers to the explicit creation of multiple
threads of control, or tasks, which synchronize and communicate under control of program-
mers. Conventionally, task parallelism is enabled to programmers through library APIs, notably
pthreads. Recently, task parallelism has gained more attention in the multicore and manycore
systems, and was introduced in several parallel programming languages because of its flexibility
and productivity. The three programming languages developed as part of the DARPA HPCS
program (Chapel [2], Fortress [6], X10 [1]) identified task parallelism as one of the prerequi-
sites for success. Task parallelism is also being introduced in existing programming models for
shared-memory parallelism such as OpenMP 3.0.

We are using two basic primitives borrowed from X10 for the task parallel programming
model: async and finish. The async statement, async 〈stmt〉, causes the parent task to fork a
new child task that executes 〈stmt〉. Execution of the async statement returns immediately,
i.e., the parent task can proceed to its following statement without waiting for the child task to
complete. The finish statement, finish 〈stmt〉, performs a join operation that causes the parent
task to execute 〈stmt〉 and then wait until all the tasks created within 〈stmt〉 have terminated
(including transitively spawned tasks).

The finish statements represents a group synchronization scope, often referred to as a finish
scope. Upon entering a finish scope, the master task initializes the scope context to keep
track of tasks and other synchronization objects used within the scope. When the master task
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Figure 2: Phaser mode lattice

reaches the end of the scope, it performs a “join” operations on all those tasks spawned within
the scope. When the join operation completes, the master task releases those synchronization
objects created inside of the scope and enters into the parent scope.

In this execution model, efficiency of the runtime system and task synchronization mecha-
nisms are extremely important for application performance and scalability. Design and imple-
mentation of these mechanisms present several challenges, for example, minimizing the overhead
and storage cost from task creation/termination, join operation, scheduling and synchroniza-
tion. In our implementation, presented in Section 4, the runtime system leverages Cyclops64
massive parallelism, fast thread creation and termination, and efficient hardware barrier prim-
itives to meet these challenges. Task synchronization mechanisms use the light-weight thread
suspend/awake library calls which are implemented using hardware interrupts.

3.2 Phasers

Phasers [3] are programming constructs that unify collective and point-to-point synchroniza-
tions in task parallel programming. It was invented as part of the Habanero-Java programming
language [7], which is derived from X10 v1.5. A variant of phasers will be included in the concur-
rency packages of the upcoming Java Development Kit (JDK) 7. The use of phasers guarantees
two safety properties: deadlock-freedom and phase-ordering. These properties, along with the
generality of its use for dynamic parallelism, distinguish phasers from other synchronization con-
structs in past works including barriers, counting semaphores [8], and X10 clocks [1]. Phasers
are designed to be easy to use and safe at the same time, helping programmers productivity in
task parallel programming and debugging.

In a task parallel program, a task registers itself on a phaser in one of the four modes: SIG-
NAL ONLY, WAIT ONLY, SIGNAL WAIT and SINGLE. For example, in a barrier synchro-
nization scenario, a task would register itself in SIGNAL WAIT mode. In a producer-consumer
scenario, the producer can register in a SIGNAL ONLY mode while the consumer can register
in a WAIT ONLY mode. When executing a next call, the task participates in a barrier or
point-to-point operation depending on the registration mode on a phaser. A task can register
on multiple phasers, so it can participate in a barrier synchronization on one phaser and a
point-to-point synchronization on another phaser while executing a single next. In order to
guarantee deadlock freedom, a child task can only register in a mode that is at the same level
or below the mode of the parent task according to the phaser mode lattice shown on Figure 2.
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Name Description

phaser * newPhaser(rMode
mode)

Create a new phaser and register it with the current task with mode

void next() Advance each phaser on which current task is registered to its next
phase. The semantics depends on the registration mode a task reg-
isters with a specific phaser.

void signalAll() Signal each phaser on which current task registers with a SIGNAL
capability.

void doSignal(phaser* ph) Signal a specific phaser ph.

void startFinish() Enter into a new finish scope

void stopFinish() Exits from the current finish scope

void async(void (*func)(void *
args), void * args)

Spawn a new task that executes function func with argument args

void asyncPhasedImplicit(void
(*func)(void * args), void * args)

Spawn a new task executes function func with argument args; the
new task registers on all the phasers of the parent task.

void asyncPhasedExplicit(phaser
* phasers[], rMode modes[], int
size, void (*func)(void * args),
void * args)

Spawn a new task executes function func with argument args; the
new task registers on those phasers with modes specified explicitly.

Table 2: Programming APIs for phasers and task parallelism runtime

The other restriction of phasers for providing deadlock freedom is that a task can transmit
to its child task only those phasers that have been created in the same immediate enclosing
finish scope. When a task exits from a finish scope, it automatically deregisters itself from
all the phasers that were created in that scope. So, a child waiting on a barrier can proceed
when the parent deregisters. However, if the child was registered on a phaser not from the
immediately enclosing finish scope, then there is a potential deadlock situation as the parent
would not have deregistered from the phaser and could be waiting on another next statement.

3.3 Library APIs for phasers and runtime

Table 2 includes the library APIs of our runtime and phaser implementations. We have decided
to use a library approach instead of a language-based approach in order to exploit the flexibility
of experimenting with different hardware primitives and system libraries. With our ongoing
compiler efforts for task parallelism, a better optimized set of APIs that are tuned for compiler
transformation will be developed.

3.4 Parallel breadth-first traversal example

To demonstrate how to program using dynamic task parallelism and phasers, we include a par-
allel breadth-first traversal (PBFT) algorithm for graph, with pseudo-codes shown in Figure 3.
Given a graph G = (V, E ), and a root vertex, r, the BFT algorithm explores the edges of G
to discover all the vertices reachable from r level by level. During the exploration of each level,
the algorithms scans a queue (Q variable as in Figure 3) that contains vertices explored in the
previous level. It adds to another queue (Qnext) the neighbors of those vertices in Q that were
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21   /* the task function */ 
22   void pbft_worker ( V[ ] Q) { 
23   V [ ] Qnext = BFT( Q ); 
24   next( ); 
25 if ( Qnext.size( ) )  
26            pbft_part ( Qnext ); 
27   }  
28 
29   /* sequential one-level traversal */ 
30   V [ ] bft ( V[ ] Q ) { 
31 V [ ] Qnext; 
32 foreach( v : Q )  { 
33 /* get the neighbors of v */ 
34 nbList = v.nbList;  
35 foreach ( nb : nbList ) 
36      if ( cas(!marked[nb], 0, 1) )   
37                  Qnext.add( nb ); 
38   } 
39       return Qnext; 
40   } 

 1   /* parallel breadth-first traversal */ 
 2   void pbft ( G g, V root ) { 
 3    Q[0] = root; 
 4    marked[root] = true; 
 5    startFinish( ); 
 6   newPhaser( SIGNAL_WAIT ); 
 7   pbft_part ( Q ); 
 8   stopFinish( ); 
 9    } 
10 
11   /* partition data and spawn task */ 
12   void pbft_part ( V[ ] Q ) { 
13   next(); /* collect results */ 
14   V [ ][ ] Qpart = part(Q, BLOCK_SIZE); 
15 
16     for ( i=0; i<Qpart.size-1; i++ )  
17       asyncPhasedImplicit(pbft_worker, 
18                  Qpart[i] ); 
29     pbft_worker ( Qpart[Qpart.size – 1] ); 
20    } 

Figure 3: Parallel breadth-first traversal algorithm using task parallelism and phaser synchro-
nization

not visited before. At the end of the exploration of a level, the content of Qnext is copied to Q
and Qnext is emptied. Then the algorithm proceeds to explore the next level, until there are
no more neighbors to visit, i.e., Q is empty.

The task parallel version of this algorithm, when exploring each level, partitions the content
of Q into multiple blocks. For each block, a task is then created to process the block using
the asyncPhasedImplicit API, as shown in line 17 of the pbft part function in Figure 3. Each
task executes the pbft worker function that explores the given level by calling a sequential BFT
function bft, as in line 23. The bft function is similar to the sequential BFT algorithm, except
in that it needs to perform an atomic “compare-and-set” operation to check whether a vertex
was already visited or not. The barrier synchronization between levels of multiple parallel tasks
is performed in a next call, as in line 24 of the code. The phaser and finish scope of the whole
algorithms are initialized at the beginning of the pbft function in line 2.

As shown in Figure 3, the PBFT program includes no explicit thread creation and termina-
tion calls or explicit barrier operations, thus reducing the complexity of parallel programming
reasoning for programmers. With the deadlock-freedom guarantee of using phasers for syn-
chronization, application programmers are able to write safe parallel programs in a much more
productive way than using system and hardware APIs. In Section 5, we discuss the performance
factors of using these APIs in different applications.

4 Implementation

This section discusses how our implementation of task parallel runtime and phasers leverages
the hardware and system features of Cyclops64.
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4.1 Task Parallelism

Our task parallelism runtime implementation takes advantage of the fast thread creation and
termination on Cyclops64. Unlike the runtime in Cilk [9] or Habanero-Java [3] that use work-
stealing for task scheduling, our runtime uses a much simpler approach that maps task creation
to creation of a new Cyclops64 thread that will run on an available thread unit. Our stopFinish
operation is also greatly simplified in that the master task only performs a join operation on
children tasks, without performing other bookkeeping or creating continuations. A significant
drawback of this approach is that the number of tasks that can exist at any point in program
execution cannot exceed the hardware capabilities of the system. While this would be a very
serious limitation on the current multicore architectures, a massively parallel manycore system
such as Cyclops64 has support for a large number of hardware threads (160 threads on a single
chip), allowing many useful task parallel applications to be executed on the system without
exceeding this limit.

4.2 Phasers

We have used a library approach for the phaser implementation. Each phaser has the knowledge
of all signaling tasks. Each task has the knowledge of all phasers it is registered on, in both
SIGNAL and WAIT mode. Each phaser has two counters that track the current signal phase
and wait phase, named masterWaitPhase and masterSigPhase. A phaser registration with a
task is represented by a synchronization object, named sync that contains the registration mode
and the current phase. Each phaser has two tables, a signal sync object table and a wait sync
object table. A task uses two hash tables to maintain two lists of <phaser, sync> pairs, one for
signal sync objects and another for wait sync objects.

We have four implementation variants of the phasers. They all have the same programming
interface, requiring no changes in application code when switching between different phaser
implementations. They can be summarized as follows:

• Busy-wait: In this implementation, the signal and wait operations update corresponding
integer counters and then spin in a loop waiting for the synchronization condition to be
met. This implementation consumes memory and CPU resources, but it is much portable
and simpler to implement since it relies only on a single platform-dependent “compare-
and-set” operation.

• Suspend-awake: A task suspends when it is waiting for a signal, so it does not consume
memory bandwidth as in a busy-wait implementation. A signal operation wakes up wait-
ing (sleeping) tasks. This implementation uses the tnt suspend and tnt awake functions
provided by the Cyclops64 TNT libraries, which use fast hardware interrupts.

• Busy-wait + tnt barrier: Using this implementation, if a task performs a barrier op-
eration when calling next, the runtime calls the hardware-supported tnt barrier wait. If
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a task performs a point-to-point signal or wait operation, the runtime uses the busy-
wait approach. The runtime decides whether an operation is a barrier or a signal-wait
according to the registration mode of the phasers involved. In addition, when a task
registers(deregisters) with a phaser, a tnt barrier include(exclude) call is made to set up
the synchronization group.

• Suspend-awake + tnt barrier: This implementation is similar to the last one, except that
point-to-point signal and wait operations use the tnt suspend and tnt awake functions.

5 Experimental Results

In this section, we discuss the experimental results of phaser synchronization using different
benchmarks. The Cyclops64 manycore processor (Section 2) was used for this study. The eval-
uation of phasers was conducted using both micro-benchmarks and two common applications:
A two-dimensional finite difference time domain (FDTD2D) and LU domain-decomposition
(LU). Phaser synchronization and program partitioning code was inserted manually by the
programmer in each case. The programs used for the experiments are linked with an auxiliary
library that we call the “Phaser runtime system”. That was written by the authors and that
implements phaser primitives using thread operations normally available to the user.

Portability, efficiency and ease of implementation of phasers were studied using the above
four different approaches. The programs were compiled with gcc for Cyclops64, version 4.3.2,
with the -O3 flag for optimization. The programs were executed using the FAST Simulator [4],
which is functionally accurate and it reproduces execution timing with exceptional accuracy.
The following sections present a detailed description of each experiment.

5.1 Threadring micro-benchmark for point-to-point synchronization

The threadring example is a simple benchmark to evaluate the point-to-point synchronization
overhead. In this micro-benchmark, a group of tasks form a signal ring; each task waits on
the signal from the previous task and signals the next task after the task receives the signal.
In threadring, each task registers one phaser with WAIT ONLY mode and another phaser
with SIGNAL ONLY mode. As shown in Figure 4, the memory consumption of busy-wait
has no impact on the time required to complete a round of signals. In fact, the busy-wait
implementation performs slightly better than that using hardware interrupts. These results
imply that busy-wait is not always the worst option in point-to-point synchronizations.

The high performance obtained using the busy-wait implementation is due in part to the
high bandwidth and low latency of the local on-chip memory. Although the other techniques
in our experiments use hardware support, they still suffer from overhead from the supporting
software required to use the hardware primitives. In contrast, busy-wait uses a very simple
polling mechanism that does not require complex support software.
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Figure 4: Threadring round time on Cyclops64 simulator

5.2 Barrier micro-benchmarks

We conducted two barrier operation evaluations: static barrier and dynamic barrier. In the
static barrier example, the number of tasks participating in the barrier operations are fixed. We
use this benchmark to compare barrier operations using phasers with that in other programming
model, such as OpenMP that only allows a fixed number of tasks involved in barrier wait
operations. The results, as plotted in Figure 5, shows OpenMP barrier (using GNU libgomp
runtime) overhead is about 2x to 3x larger than that phaser barrier overhead. This is especially
true when the number of tasks involved in barrier operations is large, for example, for more
than 32 tasks.

The dynamic barrier benchmark highlights the capability of phasers to handle a variable
number of tasks. This capability is key to handling synchronization for dynamic parallelism in
a program. In this benchmark, a phaser is used as a barrier synchronization point where the
number of threads participating in a barrier varies over time. The phaser is initiated with 2
threads participating in a barrier. After the first barrier, each thread makes a decision over 3
choices. It can either spawn a new thread or terminate itself or continue as is. When a thread
spawns, the new thread automatically gets registered on the same phaser to participate in the
barrier during the next synchronization point. When a thread decides to terminate itself, then
it deregisters from the phaser. The decision is based on a random probability. This way a
dynamic number of threads participate in the same barrier in over time.

The results for dynamic barrier evaluation are shown in Figure 6. Interestingly, for 128
threads, the busy-wait phasers outperforms the other three implementations for a large margin,
which may imply the setup overhead of TNT barriers and suspend-awake mechanisms become
a dominant factor when a large number of tasks are participating in the operations.

5.3 Two-dimensional finite difference time domain (FDTD2D)

The Finite Difference Time Domain (FDTD) technique is a commonly used way to directly
solve Maxwell’s Equations for electromagnetic wave propagation. The FDTD technique uses
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discretization of physical variables to enable approximations of derivatives. An implementation
of the Finite Difference Time Domain (FDTD) technique as described in [10] was used to test
the effectiveness of phasers for real scientific applications. FDTD is an excellent choice to study
synchronization and parallelization techniques for many core architectures: The algorithm is
simple, it has abundant parallelism and its complexity depends on the physical phenomena that
it models, ranging from a simple array read-modify-write, to numerical integration of physical
variables. In two dimensional FDTD implementations, the physical variables are discretized
resulting in 2 dimensional arrays that are updated several times.

Two cases were considered for this experiment: A simulation of the propagation of an
electromagnetic wave in vacuum (Figure 7) and a simulation of a non-linear material excited
by a moving external source (Figure 8). For all cases, the physical environment simulated was
discretized to 16 time steps and a grid of size 150x100 for the spatial dimensions.

The simpler case presented in Figure 7 is characterized by a constant amount of computation

13



FDTD2D balanced

0

20

40

60

80

100

120

2 4 8 16 32 64 96 128 150

Number of threads

T
im

e
 (

m
s
)

tnt_barrier only, no phaser

busy-wait

busy-wait + tnt_barrier

suspend-awake

suspend-awake + tnt_barrier

Figure 7: FDTD 2D with point source
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Figure 8: FDTD 2D with nonlinear physical source

per array element. Barrier synchronization has been successfully used to synchronize multiple
threads executing the program, since all threads share approximately the same amount of work-
load. As observed in Figure 7, barriers are a reasonable choice to synchronize threads during
each timestep. In the experiments shown in Figure 7, four different phaser implementations
were used to synchronize only the threads that required synchronization. The overhead of
phasers account for the somewhat lower performance experienced, but they present a reason-
able approach to synchronization, even when compared against hardware-supported barriers
running a program with uniform workloads.

Phaser synchronization overwhelms the performance of barrier synchronization when the
computational load is not so uniform. The physical simulation shown in Figure 8 (source trav-
eling in a nonlinear material) shows that barrier synchronization is inadequate when the load
among threads is not uniform. In this case, the point-to-point synchronization provided by
phasers presents a significant advantage over barriers, even when such barriers are natively
supported by hardware. Figure 8 shows that the overhead of phaser implementations is negli-
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Figure 9: Progress of Blocked LU decomposition per iteration

gible in light of the advantages of point-to-point synchronization for real applications. Phaser
synchronization greatly reduces problems associated with barriers such as noise amplification
or bad scheduling of resources.

5.4 LU decomposition

LU decomposition is a well studied algorithm for uniprocessor and multiprocessor systems. It
is frequently used to characterize the performance of high-end parallel systems and determine
their rank in the Top 500 list [11]. We focus on blocking algorithms since they have been
extensively used in distributed-memory and shared memory-systems [12, 13]. These kind of
algorithms divide application’s data into fixed, smaller-sized blocks where each one is of them
is processed by one processing unit.

A more detailed explanation of the Blocked LU decomposition is as follows and uses figure
9: A matrix of size N ×N is divided into M ×M blocks, of approximately the same size. M

iterations, each one with 3 steps, are done in a complete Blocked LU: (1) The top-left corner
block (blue) is updated, then (2) the first row and column blocks (green) are calculated; each
block can be processed independently and they use the results of the first step, and finally,
(3) the rest of blocks (yellow) are calculated using the results from the second step. In a next
iteration, blocks processed in the third step of the previous iteration become the target of
the calculation. During the final iteration, only one block located in the lower right corner is
calculated.

There are two main challenges in this algorithm: (1) The number of blocks processed are
decreasing in each iteration, meaning that many processing units used in the first iteration will
not be used in the next one, wasting computational resources. A dynamic partition through
iteration can deal with this issue [14]. And (2), synchronization between steps of the same iter-
ation use barriers to avoid data races. The use of barrier synchronization hurts the performance
of the algorithm and it is not strictly necessary. Phasers, as a point-to-point synchronization
mechanism, are better equipped to address this kind of algorithms.

A dependency graph for one iteration of LU decomposition is shown in Figure 10. Each arrow
represents a data dependency being controlled by a phaser that orchestrates synchronization
between each pair of blocks.

The results of executing LU are shown in Figure 11. Phasers present a better performance
when compared to hardware supported barriers. The distinction is particularly significant when
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Figure 10: Iteration of LU decomposition synchronized by phasers
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Figure 11: Static Blocked LU Decomposition

a low number of threads (less than 49 in this example) is used. For large number of threads, the
granularity of data partition and phaser synchronizations becomes finger as compared to smaller
number of threads, phaser overhead shows up in the overall performance. As we observed in
the figure, when this number is greater than 64, hardware barrier outperforms phaser-based
implementations. We expect that future implementations of phasers will provide competitive
performance when compared with hardware barriers even for very fine grain synchronization.

Nevertheless, phasers are a very promising technique that perform reasonably well for uni-
form scenarios and that provide a significant improvement over barriers when tasks do not have
the same amount of work, as is the case of a few threads executing LU or the FDTD 2D case
presented in Figure 8. We expect that future, optimized implementations of phasers for a large
number of threads will result in performance similar to that of hardware supported barriers.

6 Related Work

Task parallelism and fine grain synchronization have been two separate and active research
topics in the past, and have been gaining their popularity as parallel programming for multicore
and manycore architectures is gradually becoming programming mainstreams. For examples,
approaches such as Cilk [15] and OpenMP [16] have been proposed to express and use available
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parallelism as tasks in programs. EARTH [17, 18, 19], I-Structures [20] and M-Structures [21]
have proposed different solutions to address fine grain synchronization for parallel programming.

Cilk [15, 9] presents a simpler programming model where only fork/join operations are
allowed, thus allowing some degree of task parallelism but limited to a join-type of synchro-
nization between tasks. The use of work-stealing runtime in Cilk is one direction we would like
to explore for our task parallel runtime.

OpenMP programming and execution model [16] address task parallelism in its recent re-
lease, but it is constrained in its ability to handle irregular task synchronization, and dynamic
synchronization in general. OpenMP pays great attention to applications where barrier syn-
chronization and single-thread execution regions are useful. These directives must be executed
by a fixed number of threads, symmetrically, with no support for dynamic parallelism.

In EARTH (Efficient Architecture for Running Threads) runtime, tasks are associated with
threaded function/procedure invocations that can be invoked dynamically through specialized
procedure/function calls. Such tasks communicate through a shared memory model, while the
code body of an individual task can also be parallelized and managed using a multhreading
execution model having its origin in dataflow models [18, 22, 23].

I-Structures [20] are single-assignment constructs that support synchronization by allowing
a single producer per memory location. In systems supporting I-Structures, readers are forced
to wait (often using hardware support) for the producer to write during memory operations.
M-Structures [21] allow multiple assignments, but each value has a single producer. Neither
I-structures nor M-structures are general enough to support all the synchronization patterns
that can be supported by phasers.

The JUC CyclicBarrier class [24] supports periodic barrier synchronization among a set
of threads. Unlike Phasers, however, CyclicBarrier does not support the dynamic addition or
removal of threads; nor do they support one-way synchronization or split-phase operations.

Titanium is a dialect of Java for SPMD parallelism [25]. The language has a notion of single
values that are used to ensure coherence at synchronization points. A set of expression rules
enable coherence by inserting conservative checks statically. Phasers, on the other hand, do
not require all tasks to reach the same synchronization point except when this is specifically
desired, and synchronization is performed dynamically by the runtime.

7 Conclusions and Future Work

In this paper, we present a design and implementation of phasers, a high-level synchroniza-
tion construct for task-parallel programs, on a manycore Cyclops64 architecture. We show
that phasers can be implemented very efficiently, providing a flexible and high-level program-
ming unified construct for global and group barriers, point-to-point signal/wait and wavefront
synchronization on manycore architectures.

We have designed and implemented four different techniques for phaser synchronization on
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Cyclops64 that use a combination of software-based busy-wait approach, hardware barriers,
and hardware support for thread suspend/awake.

Our experiments show that phasers, using our implementations on Cyclops64, outperform
OpenMP barriers by up to two orders of magnitude, and also deliver performance that is
comparable to the hardware barriers on Cyclops64, while providing much more portable, flexible
and higher-level synchronization mechanism to the programmer than either OpenMP barriers
or the Cyclops64 hardware barriers.

In the future, we will experiment with more bandwidth-limited applications on Cyclops64
to evaluate the limitations of our busy-wait phaser implementation. We will also investigate
techniques to allow dynamic creation of a number of tasks that exceeds the number of hard-
ware threads on a Cyclops64 machine, without compromising the very high efficiency of our
implementation of the simplified task-parallel programming model.
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